SICP - 11 - 变动数据结构
7/29/2024
变动的表结构
练习 3.12
append!
(define (last-pair x)
(if (null? (cdr x))
x
(last-pair (cdr x))))
(define (append! x y)
(set-cdr! (last-pair x) y)
x)
(define x (list 'a 'b))
(define y (list 'c 'd))
(define z (append x y))
(display (cdr x)) (newline)
(define w (append! x y))
(display (cdr x))
练习 3.13
make-cycle
(define (last-pair x)
(if (null? (cdr x))
x
(last-pair (cdr x))))
(define (make-cycle x)
(set-cdr! (last-pair x) x)
x)
(define z (make-cycle (list 'a 'b 'c)))
z
练习 3.14
(define (mystery x)
(define (loop x y)
(if (null? x)
y
(let ([temp (cdr x)])
(set-cdr! x y)
(loop temp x)))) ; x = temp, y = x
(loop x '()))
(define v (list 'a 'b 'c))
(define w (mystery v))
(display v) (newline)
(display w)
作用:原地反转一个链表,每次循环把 x
的第一个元素摘下来放到 y
的末尾
练习 3.15
(define (set-to-wow! x)
(set-car! (car x) 'wow)
x)
(define x (list 'a 'b))
(define z1 (cons x x))
(define z2 (cons (list 'a 'b) (list 'a 'b)))
(display (set-to-wow! z1)) (newline)
(display (set-to-wow! z2))
练习 3.16
(define (count-pairs x)
(if (not (pair? x))
0
(+ (count-pairs (car x))
(count-pairs (cdr x))
1)))
(display (count-pairs (cons '() (cons '() (cons '() '()))))) (newline)
(define y (cons '() '()))
(define z (cons y (cons y '())))
(display (count-pairs z)) (newline)
(define a (cons '() '()))
(define b (cons a a))
(define c (cons b b))
(display (count-pairs c))
; 有环的情况下不返回
练习 3.17
(define (count-pairs x)
(define visited '())
(define (inner node)
(if (or (memq node visited)
(not (pair? node)))
0
(begin
(set! visited (cons node visited))
(+ (inner (car node))
(inner (cdr node))
1))))
(inner x))
(display (count-pairs (cons '() (cons '() (cons '() '()))))) (newline)
(define y (cons '() '()))
(define z (cons y (cons y '())))
(display (count-pairs z)) (newline)
(define a (cons '() '()))
(define b (cons a a))
(define c (cons b b))
(display (count-pairs c)) (newline)
(define cycle-list (cons '() (cons '() (cons '() '()))))
(set-cdr! (cddr cycle-list) cycle-list)
(display (count-pairs cycle-list))
练习 3.18
检查链表是否有环
(define (check-cycle x)
(define visited '())
(define (check-cycle-inner node)
(cond [(memq node visited) #t]
[(not (pair? node)) #f]
[else (begin (set! visited (cons node visited))
(check-cycle-inner (cdr node)))]))
(check-cycle-inner x))
(display (check-cycle (cons '() (cons '() (cons '() '()))))) (newline)
(define y (cons '() '()))
(define z (cons y (cons y '())))
(display (check-cycle z)) (newline)
(define a (cons '() '()))
(define b (cons a a))
(define c (cons b b))
(display (check-cycle c)) (newline)
(define cycle-list (cons '() (cons '() (cons '() '()))))
(set-cdr! (cddr cycle-list) cycle-list)
(display (check-cycle cycle-list))
练习 3.19
不使用额外空间判断链表是否有环
(define (check-cycle x)
(define (check-cycle-inner x1 x2)
(cond [(eq? x1 x2) #t]
[(or (null? x2) (null? (cdr x2))) #f]
[else (check-cycle-inner (cdr x1) (cddr x2))]))
(cond [(or (null? x) (null? (cdr x))) #f]
[else (check-cycle-inner (cdr x) (cddr x))]))
(display (check-cycle (cons '() (cons '() (cons '() '()))))) (newline)
(define y (cons '() '()))
(define z (cons y (cons y '())))
(display (check-cycle z)) (newline)
(define a (cons '() '()))
(define b (cons a a))
(define c (cons b b))
(display (check-cycle c)) (newline)
(define cycle-list (cons '() (cons '() (cons '() '()))))
(set-cdr! (cddr cycle-list) cycle-list)
(display (check-cycle cycle-list))
使用局部数状态和赋值实现数据对象的改变
Assignment is all that is needed, theoretically, to account for the behavior of mutable data. As soon as we admit set! to our language, we raise all the issues, not only of assignment, but of mutable data in general.
On the other hand, from the viewpoint of implementation, assignment requires us to modify the environment, which is itself a mutable data structure. Thus, assignment and mutation are equipotent: Each can be implemented in terms of the other.
练习 3.20
画出显示下面一系列表达式的求值过程的环境图示:
(define (cons x y)
(define (set-x! v) (set! x v))
(define (set-y! v) (set! y v))
(define (dispatch m)
(cond [(eq? m 'car) x]
[(eq? m 'cdr) y]
[(eq? m 'set-car!) set-x!]
[(eq? m 'set-cdr!) set-y!]
[else (error "Undefined operation -- CONS" m)]))
dispatch)
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))
(define (set-car! z new-value)
((z 'set-car!) new-value)
z)
(define (set-cdr! z new-value)
((z 'set-cdr!) new-value)
z)
(define x (cons 1 2))
(define z (cons x x))
(set-car! (cdr z) 17)
(car x)
TODO
队列的表示
练习 3.21
print-queue
(define (front-ptr queue) (car queue))
(define (rear-ptr queue) (cdr queue))
(define (set-front-ptr! queue item) (set-car! queue item))
(define (set-rear-ptr! queue item) (set-cdr! queue item))
(define (empty-queue? queue) (null? (front-ptr queue)))
(define (make-queue) (cons '() '()))
(define (front-queue queue)
(if (empty-queue? queue)
(error "FRONT called with an empty queue" queue)
(car (front-ptr queue))))
(define (insert-queue! queue item)
(let ([new-pair (cons item '())])
(cond [(empty-queue? queue)
(set-front-ptr! queue new-pair)
(set-rear-ptr! queue new-pair)
queue]
[else
(set-cdr! (rear-ptr queue) new-pair)
(set-rear-ptr! queue new-pair)
queue])))
(define (delete-queue! queue)
(cond [(empty-queue? queue)
(error "DELETE! called with an empty queue" queue)]
[else
(set-front-ptr! queue (cdr (front-ptr queue)))
queue]))
(define (print-queue queue)
(display "(queue ")
(define (iter n)
(if (eq? n (rear-ptr queue))
(display (car n))
(begin (display (car n))
(display " ")
(iter (cdr n)))))
(if (not (empty-queue? queue))
(iter (front-ptr queue)))
(display ")"))
(define q1 (make-queue))
(print-queue (insert-queue! q1 'a)) (newline)
(print-queue (insert-queue! q1 'b)) (newline)
(print-queue (delete-queue! q1)) (newline)
(print-queue (delete-queue! q1)) (newline)
练习 3.22
利用局部状态构建队列
(define (make-queue)
(let ([front-ptr '()]
[rear-ptr '()])
(define (empty-queue?) (null? front-ptr))
(define (front-queue)
(if (empty-queue?)
(error "FRONT called with an empty queue")
(car front-ptr)))
(define (insert-queue! item)
(let ([new-pair (cons item '())])
(cond [(empty-queue?)
(set! front-ptr new-pair)
(set! rear-ptr new-pair)]
[else
(set-cdr! rear-ptr new-pair)
(set! rear-ptr new-pair)])))
(define (delete-queue!)
(cond [(empty-queue?)
(error "DELETE! called with an empty queue")]
[else
(set! front-ptr (cdr front-ptr))]))
(define (traverse-queue body)
(define (iter node)
(if (not (null? node))
(begin (body (car node))
(iter (cdr node)))))
(iter front-ptr))
(define (dispatch m)
(case m
[(empty-queue?) empty-queue?]
[(front-queue) front-queue]
[(insert-queue!)
(lambda (item)
(insert-queue! item)
dispatch)]
[(delete-queue!)
(lambda ()
(delete-queue!)
dispatch)]
[(traverse-queue) traverse-queue]
[else (error "Undefined operation -- DISPATCH" m)]))
dispatch))
(define (empty-queue? dispatch) ((dispatch 'empty-queue?)))
(define (front-queue dispatch) ((dispatch 'front-queue)))
(define (traverse-queue dispatch body) ((dispatch 'traverse-queue) body))
(define (insert-queue! dispatch item) ((dispatch 'insert-queue!) item))
(define (delete-queue! dispatch) ((dispatch 'delete-queue!)))
(define (print-queue queue)
(display "(queue")
(traverse-queue
queue
(lambda (v)
(display " ")
(display v)))
(display ")"))
(define q1 (make-queue))
(print-queue (insert-queue! q1 'a)) (newline)
(print-queue (insert-queue! q1 'b)) (newline)
(print-queue (delete-queue! q1)) (newline)
(print-queue (delete-queue! q1)) (newline)
练习 3.32
deque
(define (make-deque) (cons '() '()))
(define front-node-ptr car)
(define rear-node-ptr cdr)
(define (set-front-node-ptr! deque new-node)
(set-car! deque new-node))
(define (set-rear-node-ptr! deque new-node)
(set-cdr! deque new-node))
(define (make-deque-node val prev next) (list val prev next))
(define (val-deque-node node) (car node))
(define (prev-deque-node node) (cadr node))
(define (next-deque-node node) (caddr node))
(define (set-deque-node-val! node new-val)
(set-car! node new-val))
(define (set-deque-node-prev! node new-prev)
(set-car! (cdr node) new-prev))
(define (set-deque-node-next! node new-next)
(set-car! (cddr node) new-next))
(define (empty-deque? deque) (null? (front-node-ptr deque)))
(define (front-deque deque)
(if (null? deque)
(error "FRONT call with an empty deque" deque)
(val-deque-node (front-node-ptr deque))))
(define (rear-deque deque)
(if (null? deque)
(error "REAR call with a empty deque" deque)
(val-deque-node (rear-node-ptr deque))))
(define (front-insert-deque! deque item)
(let ([new-node (make-deque-node item '() '())])
(cond [(empty-deque? deque)
(set-front-node-ptr! deque new-node)
(set-rear-node-ptr! deque new-node)]
[else
(set-deque-node-prev! (front-node-ptr deque) new-node)
(set-deque-node-next! new-node (front-node-ptr deque))
(set-front-node-ptr! deque new-node)])))
(define (rear-insert-deque! deque item)
(let ([new-node (make-deque-node item '() '())])
(cond [(empty-deque? deque)
(front-insert-deque! deque item)]
[else
(set-deque-node-next! (rear-node-ptr deque) new-node)
(set-deque-node-prev! new-node (rear-node-ptr deque))
(set-rear-node-ptr! deque new-node)])))
(define (front-delete-deque! deque)
(cond [(empty-deque? deque)
(error "FRONT-DELETE! called with an empty deque")]
[else
(set-front-node-ptr!
deque
(next-deque-node (front-node-ptr deque)))]))
(define (rear-delete-deque! deque)
(cond [(empty-deque? deque)
(error "REAR-DELETE! called with an empty deque")]
[else
(set-rear-node-ptr!
deque
(prev-deque-node (rear-node-ptr deque)))]))
(define (print-deque deque)
(define (iter node)
(cond [(null? node) '()]
[(eq? (rear-node-ptr deque) node)
(display " ")
(display (val-deque-node node))]
[else
(display " ")
(display (val-deque-node node))
(iter (next-deque-node node))]))
(display "(deque")
(iter (front-node-ptr deque))
(display ")"))
(define d (make-deque))
(print-deque d) (newline)
(front-insert-deque! d 'b)
(print-deque d) (newline)
(front-insert-deque! d 'a)
(print-deque d) (newline)
(front-insert-deque! d 0)
(print-deque d) (newline)
(rear-insert-deque! d 'c)
(print-deque d) (newline)
(rear-insert-deque! d 'd)
(print-deque d) (newline)
(rear-insert-deque! d 0)
(print-deque d) (newline)
(rear-delete-deque! d)
(print-deque d) (newline)
(front-delete-deque! d)
(print-deque d)
表格的表示
一维表格
(define (lookup key table)
(let ([record (assoc key (cdr table))])
(if record
(cdr record)
false)))
(define (assoc key records)
(cond [(null? records) #f]
[(equal? key (caar records)) (car records)]
[else (assoc key (cdr records))]))
(define (insert! key value table)
(let ([record (assoc key (cdr table))])
(if record
(set-cdr! record value)
(set-cdr! table (cons (cons key value) (cdr table)))))
'ok)
; 如果不采用这种安排方式,insert!过程每次向表列中加入一个记录后,就需要返回表列的新起始位置
(define (make-table)
(list '*table*))
(define table (make-table))
(insert! 1 "Alice" table)
(insert! 2 "Bob" table)
(insert! 2 "Jack" table)
(display table) (newline)
(display (lookup 1 table)) (newline)
(display (lookup 2 table)) (newline)
二维表格
(define (make-table)
(list '*table*))
(define (lookup key-1 key-2 table)
(let ([subtable (assoc key-1 (cdr table))])
(if subtable
(let ([record (assoc key-2 (cdr subtable))])
(if record
(cdr record)
#f))
#f)))
(define (insert! key-1 key-2 value table)
(let ([subtable (assoc key-1 (cdr table))])
(if subtable
(let ([record (assoc key-2 (cdr subtable))])
(if record
(set-cdr! record value)
(set-cdr! subtable (cons (cons key-2 value) (cdr subtable)))))
(set-cdr! table (cons (list key-1 (cons key-2 value)) (cdr table)))))
'ok)
(define table (make-table))
(insert! 1 1 "Alice" table)
(insert! 1 2 "Bob" table)
(insert! 2 1 "Jack" table)
(insert! 2 2 "John" table)
(display table) (newline)
(display (lookup 1 1 table)) (newline)
(display (lookup 1 2 table)) (newline)
(display (lookup 2 1 table)) (newline)
(display (lookup 2 2 table)) (newline)
(display (lookup 2 3 table)) (newline)
局部表格
(define (make-table)
(let ([local-table (list '*table*)])
(define (lookup key-1 key-2)
(let ([subtable (assoc key-1 (cdr local-table))])
(if subtable
(let ([record (assoc key-2 (cdr subtable))])
(if record
(cdr record)
#f))
#f)))
(define (insert! key-1 key-2 value)
(let ([subtable (assoc key-1 (cdr local-table))])
(if subtable
(let ([record (assoc key-2 (cdr subtable))])
(if record
(set-cdr! record value)
(set-cdr! subtable (cons (cons key-2 value)
(cdr subtable)))))
(set-cdr! local-table
(cons (list key-1 (cons key-2 value))
(cdr local-table)))))
'ok)
(define (dispatch m)
(cond [(eq? m 'lookup-proc) lookup]
[(eq? m 'insert-proc!) insert!]
[else (error "Unknown operation -- TABLE" m)]))
dispatch))
(define table (make-table))
((table 'insert-proc!) 1 1 "Alice")
((table 'insert-proc!) 1 2 "Bob")
((table 'insert-proc!) 2 1 "Jack")
((table 'insert-proc!) 2 2 "John")
(display ((table 'lookup-proc) 1 1)) (newline)
(display ((table 'lookup-proc) 1 2)) (newline)
(display ((table 'lookup-proc) 2 1)) (newline)
(display ((table 'lookup-proc) 2 2)) (newline)
(display ((table 'lookup-proc) 2 3)) (newline)