SICP - 6 - 符号数据

7/25/2024

符号数据基础

memq 的实现

(define (memq item x)
  (cond [(null? x) #f]
        [(eq? item (car x)) x]
        [else (memq item (cdr x))]))

(list (memq 'apple '(pear banana prune))
      (memq 'apple '(x (apple sauce) y apple pear)))

练习 2.53

解释器在求值下面各表达式时将打印出什么

(display (list 'a 'b 'c)) (newline)
(display (list (list 'george))) (newline)
(display (cdr '((x1 x2) (y1 y2)))) (newline)
(display (cadr '((x1 x2) (y1 y2)))) (newline)
(display (pair? (car '(a short list)))) (newline)
(display (memq 'red '((red shoes) (blue socks)))) (newline)
(display (memq 'red '(red shoes blue socks))) (newline)

练习 2.54

equal? 的定义

(define (equals? x y)
  (cond [(and (pair? x) (pair? y))
         (and (equals? (car x) (car y))
              (equals? (cdr x) (cdr y)))]
        [else (eq? x y)]))

(list (equals? '(this is a list) '(this is a list))
      (equals? '(this is a list) '(this (is a) list)))

练习 2.54

(car ''abracadabra) 的输出为 quote

(car ''abracadabra)
(car ''abracadabra)
=> (car (quote (quote abracadabra)))
=> (car '(quote abracadabra))
=> 'quote

实例 符号求导

dcdx=0dxdx=1d(u+v)dx=dudx+dvdxduvdx=u(dvdx)+v(dudx)dundx=nun1(dudx)\newcommand{\deriv}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \begin{aligned} \deriv{c}{x} &= 0 \\ \deriv{x}{x} &= 1 \\ \deriv{\left( u + v \right)}{x} &= \deriv{u}{x} + \deriv{v}{x} \\ \deriv{uv}{x} &= u\left( \deriv{v}{x} \right) + v \left(\deriv{u}{x}\right) \\ \deriv{u^n}{x} &= nu^{n-1}\left( \deriv{u}{x} \right) \end{aligned}
; 变量 => 符号
(define (variable? x) (symbol? x))

; 两个变量相同 => 符号相同
(define (same-variable? v1 v2)
  (and (variable? v1) (variable? v2) (eq? v1 v2)))

; 和式与乘式都构造为表
(define (=number? exp num)
  (and (number? exp) (= exp num)))

(define (make-sum a1 a2)
  (cond [(=number? a1 0) a2]
        [(=number? a2 0) a1]
        [(and (number? a1) (number? a2)) (+ a1 a2)]
        [else (list '+ a1 a2)]))

(define (make-product m1 m2)
  (cond [(or (=number? m1 0) (=number? m2 0)) 0]
        [(=number? m1 1) m2]
        [(=number? m2 1) m1]
        [(and (number? m1) (number? m2)) (* m1 m2)]
        [else (list '* m1 m2)]))

; 和式 => 第一个元素为符号 + 的表
(define (sum? x)
  (and (pair? x) (eq? (car x) '+)))

; 被加数 => 表示和式的表里的第二个元素
(define (addend s) (cadr s))

; 加数 => 表示和式的表里的第三个元素
(define (augend s) (caddr s))

; 乘式 => 第一个元素为符号 * 的表
(define (product? x)
  (and (pair? x) (eq? (car x) '*)))

; 被乘数 => 表示乘式的表里的第二个元素
(define (multiplier p) (cadr p))

; 乘数 => 表示乘式的表里的第三个元素
(define (multiplicand p) (caddr p))

(define (deriv exp var)
  (cond [(number? exp) 0]
        [(variable? exp)
         (if (same-variable? exp var) 1 0)]
        [(sum? exp)
         (make-sum (deriv (addend exp) var)
                   (deriv (augend exp) var))]
        [(product? exp)
         (make-sum (make-product (multiplier exp)
                                 (deriv (multiplicand exp) var))
                   (make-product (deriv (multiplier exp) var)
                                 (multiplicand exp)))]
        [else
         (error "unknown expression type -- DERIV" exp)]))

(list (deriv '(+ x 3) 'x)
      (deriv '(* x y) 'x)
      (deriv '(* (* x y) (+ x 3)) 'x))

练习 2.56

扩充指数的求导规则

(define (variable? x) (symbol? x))
(define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
  (and (number? exp) (= exp num)))
(define (make-sum a1 a2)
  (cond [(=number? a1 0) a2]
        [(=number? a2 0) a1]
        [(and (number? a1) (number? a2)) (+ a1 a2)]
        [else (list '+ a1 a2)]))
(define (make-product m1 m2)
  (cond [(or (=number? m1 0) (=number? m2 0)) 0]
        [(=number? m1 1) m2]
        [(=number? m2 1) m1]
        [(and (number? m1) (number? m2)) (* m1 m2)]
        [else (list '* m1 m2)]))
(define (sum? x)
  (and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s) (caddr s))
(define (product? x)
  (and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p) (caddr p))

(define (exponentiation? x) (and (pair? x) (eq? (car x) '**)))

(define (base x) (and (pair? x) (cadr x)))

(define (exponent x) (and (pair? x) (caddr x)))

(define (make-exponentiation base exponent)
  (cond [(=number? base 0) 0]
        [(=number? base 1) 1]
        [(=number? exponent 0) 1]
        [(=number? exponent 1) base]
        [else (list '** base exponent)]))

(define (deriv exp var)
  (cond [(number? exp) 0]
        [(variable? exp)
         (if (same-variable? exp var) 1 0)]
        [(sum? exp)
         (make-sum (deriv (addend exp) var)
                   (deriv (augend exp) var))]
        [(product? exp)
         (make-sum (make-product (multiplier exp)
                                 (deriv (multiplicand exp) var))
                   (make-product (deriv (multiplier exp) var)
                                 (multiplicand exp)))]
        [(exponentiation? exp)
         (make-product (exponent exp)
                       (make-exponentiation (base exp)
                                            (- (exponent exp) 1)))]
        [else
         (error "unknown expression type -- DERIV" exp)]))

(deriv '(** (- x 1) 2) 'x)

练习 2.57

扩充求导程序,使之能处理任意数量项的和与乘积

Hint: 只修改和与乘积的表示,而完全不修改过程 deriv 的方式完成这一扩充

(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
  (and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
  (and (number? exp) (= exp num)))
(define (make-sum a1 a2)
  (cond [(=number? a1 0) a2]
        [(=number? a2 0) a1]
        [(and (number? a1) (number? a2)) (+ a1 a2)]
        [else (list '+ a1 a2)]))
(define (make-product m1 m2)
  (cond [(or (=number? m1 0) (=number? m2 0)) 0]
        [(=number? m1 1) m2]
        [(=number? m2 1) m1]
        [(and (number? m1) (number? m2)) (* m1 m2)]
        [else (list '* m1 m2)]))
(define (sum? x)
  (and (pair? x) (eq? (car x) '+)))

; --------------------------
(define (addend s) (cadr s))
(define (augend s)
  (let ([rest (cddr s)])
    (if (= 1 (length rest))
        (car rest)
        (cons '+ rest))))
; --------------------------

(define (product? x)
  (and (pair? x) (eq? (car x) '*)))

; --------------------------
(define (multiplier p) (cadr p))
(define (multiplicand p)
  (let ([rest (cddr p)])
    (if (= 1 (length rest))
        (car rest)
        (cons '* rest))))
; --------------------------

(define (deriv exp var)
  (cond [(number? exp) 0]
        [(variable? exp)
         (if (same-variable? exp var) 1 0)]
        [(sum? exp)
         (make-sum (deriv (addend exp) var)
                   (deriv (augend exp) var))]
        [(product? exp)
         (make-sum (make-product (multiplier exp)
                                 (deriv (multiplicand exp) var))
                   (make-product (deriv (multiplier exp) var)
                                 (multiplicand exp)))]
        [else
         (error "unknown expression type -- DERIV" exp)]))

(list (deriv '(+ x x x) 'x)
      (deriv '(* x x x) 'x))

练习 2.58

(a)

(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
  (and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
  (and (number? exp) (= exp num)))

; --------------------------
(define (make-sum a1 a2)
  (cond [(=number? a1 0) a2]
        [(=number? a2 0) a1]
        [(and (number? a1) (number? a2)) (+ a1 a2)]
        [else (list a1 '+ a2)]))

(define (make-product m1 m2)
  (cond [(or (=number? m1 0) (=number? m2 0)) 0]
        [(=number? m1 1) m2]
        [(=number? m2 1) m1]
        [(and (number? m1) (number? m2)) (* m1 m2)]
        [else (list m1 '* m2)]))
(define (sum? x)
  (and (pair? x) (eq? (cadr x) '+)))

(define (addend s) (car s))
(define (augend s) (caddr s))

(define (product? x)
  (and (pair? x) (eq? (cadr x) '*)))

(define (multiplier p) (car p))
(define (multiplicand p) (caddr p))
; --------------------------

(define (deriv exp var)
  (cond [(number? exp) 0]
        [(variable? exp)
         (if (same-variable? exp var) 1 0)]
        [(sum? exp)
         (make-sum (deriv (addend exp) var)
                   (deriv (augend exp) var))]
        [(product? exp)
         (make-sum (make-product (multiplier exp)
                                 (deriv (multiplicand exp) var))
                   (make-product (deriv (multiplier exp) var)
                                 (multiplicand exp)))]
        [else
         (error "unknown expression type -- DERIV" exp)]))

(list (deriv '(x + 3) 'x)
      (deriv '(x * y) 'x)
      (deriv '((x * y) * (x + 3)) 'x))

(b)

TODO

实例 集合的表示

集合作为未排序的表

练习 2.59

为采用未排序表的集合实现定义 union-set 操作

(define (union-set set1 set2)
  (cond [(null? set1) set2]
        [(element-of-set? (car set1) set2)
         (union-set (cdr set1) set2)]
        [else (cons (car set1) (union-set (cdr set1) set2))]))

(union-set '(1 2 3) '(3 4 5))

使用 accumulate 的实现

(define (adjoin-set x set)
  (if (element-of-set? x set)
      set
      (cons x set)))

(define (accumulate op initial sequence)
  (if (null? sequence)
      initial
      (op (car sequence)
          (accumulate op initial (cdr sequence)))))

(define (union-set set1 set2)
  (accumulate adjoin-set set2 set1))

(union-set '(1 2 3) '(3 4 5))

练习 2.60

(define adjoin-set cons)
(define union-set append)

各操作的效率

过程不允许重复允许重复
element-of-set?Θ(n)\Theta(n)O(1)O(1)
adjoin-setΘ(n2)\Theta(n^2)O(kn)O(kn)
unoin-setΘ(n)\Theta(n)O(kn)O(kn)
intersection-setΘ(n2)\Theta(n^2)O((kn)2)O((kn)^2)

集合作为排序的表

element-of-set?

(define (element-of-set? x set)
  (cond [(null? set) #f]
        [(= x (car set)) #t]
        [(< x (car set)) #f]
        [else (element-of-set? x (cdr set))]))


(list (element-of-set? 2 '(1 2 3))
      (element-of-set? 4 '(1 2 3)))

intersection-set

  • 比较两个集合的起始元素 x1x2
    • (= x1 x2) => 得到交集的第一个元素,交集的其他元素就是这两个集合的 cdr 的交集。
    • (< x1 x2) => 由于 x2 是集合 set2 的最小元素,立即可以断定 x1 不会出现在集合的任何地方,它不应该在交集中,两集合的交集为 (set2)(cdr set1) 的交集
    • (< x2 x1) => 集合 set1(cdr set2) 的交集
(define (intersection-set set1 set2)
  (if (or (null? set1) (null? set2))
      '()
      (let ([x1 (car set1)] [x2 (car set2)])
        (cond [(= x1 x2)
               (cons x1
                     (intersection-set (cdr set1)
                                       (cdr set2)))]
              [(< x1 x2)
               (intersection-set (cdr set1) set2)]
              [(< x2 x1)
               (intersection-set set1 (cdr set2))]))))

(intersection-set '(1 2 3 4 5) '(3 4 5 6 7 8))

练习 2.61

给出排序表示时 adjoin-set 的实现。

(define (adjoin-set x set)
  (cond [(null? set) (cons x '())]
        [(< x (car set)) (cons x set)]
        [(= x (car set)) set]
        [(> x (car set)) (cons (car set) (adjoin-set x (cdr set)))]))

(adjoin-set 3 '(0 1 2 4 5 6))

练习 2.62

给出在集合的排序表示上 union-set 的一个 Θ(n)\Theta(n) 实现

(define (union-set set1 set2)
  (cond [(null? set1) set2]
        [(null? set2) set1]
        [else
         (let ([x1 (car set1)] [x2 (car set2)])
           (cond [(= x1 x2) (cons x1 (union-set (cdr set1) (cdr set2)))]
                 [(< x1 x2) (cons x1 (union-set (cdr set1) set2))]
                 [(> x1 x2) (cons x2 (union-set set1 (cdr set2)))]))]))

(union-set '(1 2 3 4 5 6) '(1 3 5 7 9))

集合作为二叉树

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (make-tree entry left right)
  (list entry left right))

(define (element-of-set? x set)
  (cond [(null? set) #f]
        [(= x (entry set)) #t]
        [(< x (entry set))
         (element-of-set? x (left-branch set))]
        [(> x (entry set))
         (element-of-set? x (right-branch set))]))

(define (adjoin-set x set)
  (cond [(null? set) (make-tree x '() '())]
        [(= x (entry set)) set]
        [(< x (entry set))
         (make-tree (entry set)
                    (adjoin-set x (left-branch set))
                    (right-branch set))]
        [(> x (entry set))
         (make-tree (entry set)
                    (left-branch set)
                    (adjoin-set x (right-branch set)))]))

(define set '())

(adjoin-set 2 (adjoin-set 3 (adjoin-set 1 set)))

练习 2.63

(a)

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (make-tree entry left right)
  (list entry left right))

(define (tree->list-1 tree)
  (if (null? tree)
      '()
      (append (tree->list-1 (left-branch tree))
              (cons (entry tree)
                    (tree->list-1 (right-branch tree))))))

(define (tree->list-2 tree)
  (define (copy-to-list tree result-list)
    (if (null? tree)
        result-list
        (copy-to-list (left-branch tree)
                      (cons (entry tree)
                            (copy-to-list (right-branch tree)
                                          result-list)))))
  (copy-to-list tree '()))

(define tree1 (make-tree 7
                         (make-tree 3
                                    (make-tree 1
                                               '()
                                               '())
                                    (make-tree 5
                                               '()
                                               '()))
                         (make-tree 9
                                    '()
                                    (make-tree 11
                                               '()
                                               '()))))

(define tree2 (make-tree 3
                         (make-tree 1
                                    '()
                                    '())
                         (make-tree 7
                                    (make-tree 5
                                               '()
                                               '())
                                    (make-tree 9
                                               '()
                                               (make-tree 11
                                                          '()
                                                          '())))))

(define tree3 (make-tree 5
                         (make-tree 3
                                    (make-tree 1
                                               '()
                                               '())
                                    '())
                         (make-tree 9
                                    (make-tree 7
                                               '()
                                               '())
                                    (make-tree 11
                                               '()
                                               '()))))
(list (list (tree->list-1 tree1)
            (tree->list-1 tree2)
            (tree->list-1 tree3))
      (list (tree->list-2 tree1)
            (tree->list-2 tree2)
            (tree->list-2 tree3)))

(b)

TODO

练习 2.64

通过有序链表构建平衡二叉树

(define (make-tree entry left right) (list entry left right))

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (list->tree elements)
  (car (partial-tree elements (length elements))))

(define (partial-tree elts n)
  (if (= n 0)
      (cons '() elts)
      (let* ([left-size (quotient (- n 1) 2)]
             [left-result (partial-tree elts left-size)]
             [left-tree (car left-result)]
             [non-left-elts (cdr left-result)]
             [this-entry (car non-left-elts)]
             [right-size (- n (+ left-size 1))]
             [right-result (partial-tree (cdr non-left-elts) right-size)]
             [right-tree (car right-result)]
             [remaining-elts (cdr right-result)])
        (cons (make-tree this-entry left-tree right-tree)
              remaining-elts))))

(list->tree '(1 3 5 7 9 11))

这种通过返回剩余元素来使用递归处理单链表的方法确实令人耳目一新!

partial_tree('(1 3 5 7 9 11) 6)
; left_size = 2, right_size = 3
partial_tree('(1 3))
partial_tree('(7 8 11))
; ...

时间复杂度:Θ(n)\Theta(n)

练习 2.65

利用练习 2.63 和 练习 2.64 的结果,给出对采用(平衡)二叉树方式实现的集合的 union-setintersection-set 操作的 Θ(n)\Theta (n) 实现

(define (make-tree entry left right) (list entry left right))

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (tree->list tree)
  (define (copy-to-list tree result-list)
    (if (null? tree)
        result-list
        (copy-to-list (left-branch tree)
                      (cons (entry tree)
                            (copy-to-list (right-branch tree)
                                          result-list)))))
  (copy-to-list tree '()))

(define (list->tree elements)
  (car (partial-tree elements (length elements))))

(define (partial-tree elts n)
  (if (= n 0)
      (cons '() elts)
      (let* ([left-size (quotient (- n 1) 2)]
             [left-result (partial-tree elts left-size)]
             [left-tree (car left-result)]
             [non-left-elts (cdr left-result)]
             [this-entry (car non-left-elts)]
             [right-size (- n (+ left-size 1))]
             [right-result (partial-tree (cdr non-left-elts) right-size)]
             [right-tree (car right-result)]
             [remaining-elts (cdr right-result)])
        (cons (make-tree this-entry left-tree right-tree)
              remaining-elts))))

(define (intersection-set set1 set2)
  (if (or (null? set1) (null? set2))
      '()
      (let ([x1 (car set1)] [x2 (car set2)])
        (cond [(= x1 x2)
               (cons x1
                     (intersection-set (cdr set1)
                                       (cdr set2)))]
              [(< x1 x2)
               (intersection-set (cdr set1) set2)]
              [(< x2 x1)
               (intersection-set set1 (cdr set2))]))))

(define (union-set set1 set2)
  (cond [(null? set1) set2]
        [(null? set2) set1]
        [else
         (let ([x1 (car set1)] [x2 (car set2)])
           (cond [(= x1 x2) (cons x1 (union-set (cdr set1) (cdr set2)))]
                 [(< x1 x2) (cons x1 (union-set (cdr set1) set2))]
                 [(> x1 x2) (cons x2 (union-set set1 (cdr set2)))]))]))

(define (union-tree-set set1 set2)
  (list->tree (union-set (tree->list set1) (tree->list set2))))

(define (intersection-tree-set set1 set2)
  (list->tree (intersection-set (tree->list set1) (tree->list set2))))

(list (union-tree-set (list->tree '(1 2 3 4)) (list->tree '(3 4 5 6 7)))
      (intersection-tree-set (list->tree '(1 2 3 4)) (list->tree '(3 4 5 6 7))))

集合与信息检索

(define (make-record key name) (cons key name))
(define (key record) (car record))
(define (name record) (cdr record))

(define (make-tree entry left right) (list entry left right))
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))

(define (list->tree elements)
  (car (partial-tree elements (length elements))))

(define (partial-tree elts n)
  (if (= n 0)
      (cons '() elts)
      (let* ([left-size (quotient (- n 1) 2)]
             [left-result (partial-tree elts left-size)]
             [left-tree (car left-result)]
             [non-left-elts (cdr left-result)]
             [this-entry (car non-left-elts)]
             [right-size (- n (+ left-size 1))]
             [right-result (partial-tree (cdr non-left-elts) right-size)]
             [right-tree (car right-result)]
             [remaining-elts (cdr right-result)])
        (cons (make-tree this-entry left-tree right-tree)
              remaining-elts))))

(define (lookup given-key set-of-records)
  (if (null? set-of-records)
      '()
      (let ([cur-key (key (entry set-of-records))])
        (cond [(= cur-key given-key) (entry set-of-records)]
              [(< cur-key given-key) (lookup given-key (right-branch set-of-records))]
              [(> cur-key given-key) (lookup given-key (left-branch set-of-records))]))))

(define records (list (make-record 1 "Alice")
                      (make-record 2 "Bob")
                      (make-record 3 "Carl")
                      (make-record 4 "Diana")
                      (make-record 5 "Eve")
                      (make-record 6 "Frank")
                      (make-record 7 "Grace")
                      (make-record 8 "Hank")
                      (make-record 9 "Ivy")))

(define records-tree (list->tree records))

(lookup 6 records-tree)

实例 Huffman 编码树

练习 2.67

消息的解码

(define (make-leaf symbol weight)
  (list 'leaf symbol weight))

(define (leaf? object)
  (eq? (car object) 'leaf))

(define (symbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))


(define (make-code-tree left right)
  (list left
        right
        (append (symbols left) (symbols right))
        (+ (weight left) (weight right))))

(define (left-branch tree) (car tree))
(define (right-branch tree) (cadr tree))

(define (symbols tree)
  (if (leaf? tree)
      (list (symbol-leaf tree))
      (caddr tree)))

(define (weight tree)
  (if (leaf? tree)
      (weight-leaf tree)
      (cadddr tree)))


(define (choose-branch bit branch)
  (cond [(= bit 0) (left-branch branch)]
        [(= bit 1) (right-branch branch)]
        [else (error "bad bit -- CHOOSE-BRANCH" bit)]))

(define (decode bits tree)
  (define (decode-1 bits current-branch)
    (if (null? bits)
        '()
        (let ([next-branch
               (choose-branch (car bits) current-branch)])
          (if (leaf? next-branch)
              (cons (symbol-leaf next-branch)
                    (decode-1 (cdr bits) tree))
              (decode-1 (cdr bits) next-branch)))))
  (decode-1 bits tree))

(define sample-tree
  (make-code-tree (make-leaf 'A 4)
                  (make-code-tree
                   (make-leaf 'B 2)
                   (make-code-tree (make-leaf 'D 1)
                                   (make-leaf 'C 1)))))

(define sample-message '(0 1 1 0 0 1 0 1 0 1 1 1 0))

(decode sample-message sample-tree)

练习 2.68

消息的编码

(define (make-leaf symbol weight)
  (list 'leaf symbol weight))

(define (leaf? object)
  (eq? (car object) 'leaf))

(define (symbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))


(define (make-code-tree left right)
  (list left
        right
        (append (symbols left) (symbols right))
        (+ (weight left) (weight right))))

(define (left-branch tree) (car tree))
(define (right-branch tree) (cadr tree))

(define (symbols tree)
  (if (leaf? tree)
      (list (symbol-leaf tree))
      (caddr tree)))

(define (weight tree)
  (if (leaf? tree)
      (weight-leaf tree)
      (cadddr tree)))

(define sample-tree
  (make-code-tree (make-leaf 'A 4)
                  (make-code-tree
                   (make-leaf 'B 2)
                   (make-code-tree (make-leaf 'D 1)
                                   (make-leaf 'C 1)))))

(define (encode message tree)
  (define (encode-symbol symbol tree)
      (cond [(leaf? tree) '()]
            [(memq symbol (symbols (left-branch tree))) (cons 0 (encode-symbol symbol (left-branch tree)))]
            [(memq symbol (symbols (right-branch tree))) (cons 1 (encode-symbol symbol (right-branch tree)))]
            [else (error "bad symbol -- ENCODE-SYMBOL" symbol)]))

  (if (null? message)
      '()
      (append (encode-symbol (car message) tree)
              (encode (cdr message) tree))))

(encode '(A D A B B C A) sample-tree)

练习 2.69

生成 Huffman 编码树

(define (make-leaf symbol weight)
  (list 'leaf symbol weight))

(define (leaf? object)
  (eq? (car object) 'leaf))

(define (symbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))


(define (make-code-tree left right)
  (list left
        right
        (append (symbols left) (symbols right))
        (+ (weight left) (weight right))))

(define (left-branch tree) (car tree))
(define (right-branch tree) (cadr tree))

(define (symbols tree)
  (if (leaf? tree)
      (list (symbol-leaf tree))
      (caddr tree)))

(define (weight tree)
  (if (leaf? tree)
      (weight-leaf tree)
      (cadddr tree)))

(define (adjoin-set x set)
  (cond [(null? set) (list x)]
        [(< (weight x) (weight (car set))) (cons x set)]
        [else (cons (car set)
                    (adjoin-set x (cdr set)))]))

; pairs: ((A 4) (B 2) (C 1) (D 1))
(define (make-leaf-set pairs)
  (if (null? pairs)
      '()
      (let ([pair (car pairs)])
        (adjoin-set (make-leaf (car pair)
                                (cadr pair))
                    (make-leaf-set (cdr pairs))))))

(define (generate-huffman-tree pairs)
  (define (successive-merge leaf-set)
    (if (null? (cdr leaf-set))
        (car leaf-set)
        (successive-merge (adjoin-set (make-code-tree (car leaf-set)
                                                      (cadr leaf-set))
                                      (cddr leaf-set)))))
  (successive-merge (make-leaf-set pairs)))

(generate-huffman-tree '((A 4) (B 2) (C 1) (D 1)))

练习 2.70

对歌词进行编码

(define (make-leaf symbol weight)
  (list 'leaf symbol weight))

(define (leaf? object)
  (eq? (car object) 'leaf))

(define (symbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))


(define (make-code-tree left right)
  (list left
        right
        (append (symbols left) (symbols right))
        (+ (weight left) (weight right))))

(define (left-branch tree) (car tree))
(define (right-branch tree) (cadr tree))

(define (symbols tree)
  (if (leaf? tree)
      (list (symbol-leaf tree))
      (caddr tree)))

(define (weight tree)
  (if (leaf? tree)
      (weight-leaf tree)
      (cadddr tree)))

(define (adjoin-set x set)
  (cond [(null? set) (list x)]
        [(< (weight x) (weight (car set))) (cons x set)]
        [else (cons (car set)
                    (adjoin-set x (cdr set)))]))

; pairs: ((A 4) (B 2) (C 1) (D 1))
(define (make-leaf-set pairs)
  (if (null? pairs)
      '()
      (let ([pair (car pairs)])
        (adjoin-set (make-leaf (car pair)
                                (cadr pair))
                    (make-leaf-set (cdr pairs))))))


(define (choose-branch bit branch)
  (cond [(= bit 0) (left-branch branch)]
        [(= bit 1) (right-branch branch)]
        [else (error "bad bit -- CHOOSE-BRANCH" bit)]))

(define (decode bits tree)
  (define (decode-1 bits current-branch)
    (if (null? bits)
        '()
        (let ([next-branch
                (choose-branch (car bits) current-branch)])
          (if (leaf? next-branch)
              (cons (symbol-leaf next-branch)
                    (decode-1 (cdr bits) tree))
              (decode-1 (cdr bits) next-branch)))))
  (decode-1 bits tree))

(define (generate-huffman-tree pairs)
  (define (successive-merge leaf-set)
    (if (null? (cdr leaf-set))
        (car leaf-set)
        (successive-merge (adjoin-set (make-code-tree (car leaf-set)
                                                      (cadr leaf-set))
                                      (cddr leaf-set)))))
  (successive-merge (make-leaf-set pairs)))

(define (encode message tree)
  (define (encode-symbol symbol tree)
      (cond [(leaf? tree) '()]
            [(memq symbol (symbols (left-branch tree))) (cons 0 (encode-symbol symbol (left-branch tree)))]
            [(memq symbol (symbols (right-branch tree))) (cons 1 (encode-symbol symbol (right-branch tree)))]
            [else (error "bad symbol -- ENCODE-SYMBOL" symbol)]))

  (if (null? message)
      '()
      (append (encode-symbol (car message) tree)
              (encode (cdr message) tree))))

(define song-word-frequency
  '((A 2) (NA 16) (BOOM 1) (SHA 3) (GET 2) (YIP 9) (JOB 2) (WAH 1)))

(define song-huffman-tree (generate-huffman-tree song-word-frequency))

(define song
  '(GET A JOB
        SHA NA NA NA NA NA NA NA NA
        GET A JOB
        SHA NA NA NA NA NA NA NA NA
        WAH YIP YIP YIP YIP YIP YIP YIP YIP YIP
        SHA BOOM))

(define encoded-song (encode song song-huffman-tree))

(display "Huffman Encoding Length: " )
(display (length encoded-song)) (newline)

(display "Binary Encoding Length: " )
(display (* 3 (length song))) (newline)

(display "Encoded: ")
(display encoded-song) (newline)

(display "Decoded: ")
(display (decode encoded-song song-huffman-tree))

练习 2.71

假定我们有一棵 nn 个符号的字母表的 Huffman 树,其中各符号的相对频度分别是 1,2,4,,2n11, 2, 4, \dots, 2^{n-1} 。请对 n=5n=5n=10n=10 勾勒出有关的树的样子

对于这样的树,编码出现的最频繁的符号用 1 个二进制位

编码最不频繁的符号用 n1n - 1 个二进制位

练习 2.72

TODO