SICP - 3 - 高阶函数

7/24/2024

实例 求和过程的抽象

序列

113+157+1911+\frac{1}{1 \cdot 3} + \frac{1}{5 \cdot 7} +\frac{1}{9 \cdot 11} + \dots

缓慢地收敛到 π/8\pi/8

(define (cube x) (* x x x))

(define (sum term a next b)
  (if (> a b)
      0
      (+ (term a)
         (sum term (next a) next b))))

(define (inc n) (+ n 1))

(define (sum-cubes a b)
  (sum cube a inc b))

(define (identity x) x)

(define (sum-integers a b)
  (sum identity a inc b))

(define (pi-sum a b)
  (define (pi-term x)
    (/ 1.0 (* x (+ x 2))))

  (define (pi-next x)
    (+ x 4))
  (sum pi-term a pi-next b))

(list (sum-integers 1 10)
      (* 8 (pi-sum 1 1000)))

求积分

求出函数 ff 在范围 aabb 之间定积分的近似值,可以用下面的公式完成

ab f=[f(a+dx2)+f(a+dx+dx2)+f(a+2dx+dx2)+]dx\newcommand{\f}[1]{f\left( #1 \right)} \newcommand{\d}{\mathrm{d}} \int_a^b\ f = \left[ \f{a + \frac{\d x}{2}} + \f{a + \d x + \frac{\d x}{2}} + \f{a + 2\d x + \frac{\d x}{2}} + \dots \right]\d x
(define (sum term a next b)
  (if (> a b)
      0
      (+ (term a)
         (sum term (next a) next b))))

(define (cube x) (* x x x))

(define (integral f a b dx)
  (define (add-dx x) (+ x dx))
  (* (sum f (+ a (/ dx 2.0)) add-dx b)
     dx))

(list (integral cube 0 1 0.01)
      (integral cube 0 1 0.001))

练习 1.29

辛普森规则是一种比上面所用规则更精确的数值积分方法。采用辛普森规则,函数 ff 在范围 aabb 之间的定积分的近似值是:

h3[y0+4y1+2y2+4y3+2y4++2yn2+4yn1+yn]\frac{h}{3}\left[y_0 + 4 y_1 + 2 y_2 + 4 y_3 + 2 y_4 + \dots + 2 y_{n - 2} + 4 y_{n - 1} + y_n \right]

其中,h=(ba)/nh = (b - a) / nnn 是某个偶数,而 yk=f(a+kh)y_k = f(a + kh)(增大 nn 能提高近似值的精度)

(define (sum term a next b)
  (if (> a b)
      0
      (+ (term a)
         (sum term (next a) next b))))

(define (cube x) (* x x x))

(define (inc x) (+ x 1))

(define (simpson-integral f a b n)
  (define (h) (/ (- b a) n))
  (define (y k)
    (f (+ a (* k (h)))))
  (define (t k)
    (cond [(or (= k 0) (= k n)) (y k)]
          [(even? k) (* 2 (y k))]
          [else (* 4 (y k))]))
  (* (/ (h) 3.0)
     (sum t 0 inc n)))

(list (simpson-integral cube 0 1 100)
      (simpson-integral cube 0 1 1000))

练习 1.30

基于迭代的求和函数

(define (sum term a next b)
  (define (iter a result)
    (if (> a b)
        result
        (iter (next a) (+ (term a) result))))
  (iter a 0))

(define (pi-sum a b)
  (define (pi-term x)
    (/ 1.0 (* x (+ x 2))))

  (define (pi-next x)
    (+ x 4))
  (sum pi-term a pi-next b))

(* 8 (pi-sum 1 1000))

练习 1.31

定义 product 过程,说明如何用 product 定义 factorial。另外按照下的公式计算 π\pi 的近似值。

π4=244668335577\frac{\pi}{4} = \frac{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \dots}{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \dots}

上述公式可写成以下形式

π2=n=1(2n2n12n2n+1)\frac{\pi}{2} = \prod_{n=1}^{\infty}\left(\frac{2n}{2n - 1} \cdot \frac{2n}{2n + 1}\right)
(define (inc x) (+ x 1))

(define (product factor a next b)
  (if (> a b)
      1
      (* (factor a) (product factor (next a) next b))))

(define (factorial x)
  (product identity 1 inc x))

(define (wallis-product n)
  (define (inc x) (+ 1 x))
  (define (fact n) (* (/ (* 2 n)
                         (- (* 2 n) 1))
                      (/ (* 2 n)
                         (+ (* 2 n) 1))))
  (product fact 1.0 inc n))

(list (factorial 10)
      (* (wallis-product 10000) 2))

写一个生成迭代过程的 product 函数

(define (inc x) (+ x 1))

(define (product factor a next b)
  (define (iter a result)
    (if (> a b)
        result
        (iter (next a) (* (factor a) result))))
  (iter a 1))

(define (factorial x)
  (product identity 1 inc x))

(define (wallis-product n)
  (define (inc x) (+ 1 x))
  (define (fact n) (* (/ (* 2 n)
                         (- (* 2 n) 1))
                      (/ (* 2 n)
                         (+ (* 2 n) 1))))
  (product fact 1.0 inc n))

(list (factorial 10)
      (* (wallis-product 10000) 2))

练习 1.32

使用 accumulate 实现 sumproduct

基于递归计算的实现

(define (inc x) (+ x 1))

(define (accmulate combiner null-value term a next b)
  (if (> a b)
      null-value
      (combiner (term a)
                (accmulate combiner
                           null-value
                           term
                           (next a)
                           next
                           b))))

(define (sum term a next b)
  (accmulate + 0 term a next b))

(define (prod factor a next b)
  (accmulate * 1 factor a next b))

(list (sum identity 1 inc 100)
      (prod identity 1 inc 10))

基于迭代计算的实现

(define (inc x) (+ x 1))

(define (accmulate combiner null-value term a next b)
  (define (iter n result)
    (if (> n b)
        result
        (iter (next n) (combiner (term n) result))))
  (iter a null-value))

(define (sum term a next b)
  (accmulate + 0 term a next b))

(define (prod factor a next b)
  (accmulate * 1 factor a next b))

(list (sum identity 1 inc 100)
      (prod identity 1 inc 10))

练习 1.33

实现 filtered-accumulate,说明如何用 filtered-accumulate 表达以下内容

  1. 求出在区间 aabb 中所有素数之和(假定你已经写出了谓词 prime?prime?
  2. 小于 nn 的所有与 nn 互素的正整数(即所有满足 GCD(i,n)=1,i<n\mathrm{GCD}(i, n) = 1, i < n 的整数)之乘积
(define (filtered-accumulate filter
                             combiner
                             null-value
                             term
                             a
                             next
                             b)
  (define (iter n result)
    (cond [(> n b) result]
          [(not (filter (term n))) (iter (next n) result)]
          [else (iter (next n) (combiner n result))]))
  (iter a null-value))

(define (inc x) (+ x 1))

(define (square x) (* x x))

(define (smallest-divisor n)
  (find-divisor n 2))

(define (divides? a b)
  (= (remainder b a) 0))

(define (find-divisor n test-divisor)
  (cond [(> (square test-divisor) n) n]
        [(divides? test-divisor n) test-divisor]
        [else (find-divisor n (+ test-divisor 1))]))

(define (prime? n)
  (if (= n 1) #f
      (= n (smallest-divisor n))))

(define (prime-sum a b)
  (filtered-accumulate prime? + 0 identity a inc b))

(define (gcd a b)
  (if (= b 0)
      a
      (gcd b (remainder a b))))

(define (relative-prime? i n)
  (= (gcd i n) 1))

(define (product-of-relative-prime n)
  (define (relative-prime? i)
    (= (gcd i n) 1))
  (filtered-accumulate relative-prime? * 1 identity 1 inc n))

(list (prime-sum 10 15)
      (product-of-relative-prime 10))

使用 lambda 构建过程

练习 1.34

假设我们定义了

(define (f g) (g 2))

那么就有

(define (f g) (g 2))
(define (square x) (* x x))

(list (f square)
      (f (lambda (z) (* z (+ z 1)))))

那么如果我们要求解释器去求值 (f f),那会发生什么情况?请给出解释。

(f f)
(f 2)
(2 2)

application: not a procedure;
 expected a procedure that can be applied to arguments
  given: 2

实例 通过区间折半寻找方程的根

对于一个连续函数 fff(x)=0f(x) = 0 的根可以使用以下步骤寻找

  • 如果对于给定点 aabbf(a)<0<f(b)f(a) < 0 < f(b),那么 ffaabb 之间必有一个零点。
  • 为了确定这个零点,令 xxaabb 的平均值并计算出 f(x)f(x)
    • 如果 f(x)>0f(x) > 0 ,那么在 aaxx 之间必然有一个 ff 的零点
    • 如果 f(x)<0f(x) < 0 ,那么在 xxbb 之间必然有一个 ff 的零点
(define (average x y) (/ (+ x y) 2))

(define (search f neg-point pos-point)
  (define (close-enough? x y)
    (< (abs (- x y)) 0.001))

  (let ([midpoint (average neg-point pos-point)])
    (if (close-enough? neg-point pos-point)
        midpoint
        (let ([test-value (f midpoint)])
          (cond [(positive? test-value)
                  (search f neg-point midpoint)]
                [(negative? test-value)
                 (search f midpoint pos-point)])))))

(define (half-interval-method f a b)
  (let ((a-value (f a))
        (b-value (f b)))
    (cond [(and (negative? a-value) (positive? b-value))
            (search f a b)]
           [(and (negative? b-value) (positive? a-value))
            (search f b a)]
           [else
            (error "Values are not of opposite sign" a b)])))

(list (half-interval-method sin 2.0 4.0)
      (half-interval-method (lambda (x) (- (* x x x) (* 2 x) 3))
                            1.0
                            2.0))

实例 找出函数的不动点

xx 称为函数 ff 的不动点,如果 xx 满足方程 f(x)=xf(x) = x。对于某些函数,通过从某个初始猜测出发,反复应用 ff

f(x),f(f(x)),f(f(f(x))),f(x), f(f(x)), f(f(f(x))), \dots

直到值的变化不大时,就可以找到它的一个不动点。

计算某个数 xx 的平方根,就是要找到一个 yy 使得 y2=xy^2 = x

将这一等式变成另一个等价形式 y=x/yy = x/y,就可以发现,这里就是要寻找函数

yxyy \mapsto \frac{x}{y}

的不动点。

遗憾的是,这一不动点搜寻并不收敛。考虑某个初始猜测 y1y_1 ,下一个猜测将是 y2=x/y1y_2 = x / y_1 ,而再下一个猜测是 y3=x/y2=x/(x/y1)=y1y_3 = x/y_2 = x/(x/y_1) = y_1。结果是进入了一个无限循环。

控制这类震荡的一种方法是不让有关的猜测变化太剧烈。因为实际答案总是在两个猜测 yyx/yx/y 之间,我们可以做出一个猜测,使之不像 x/yx / y 那样远离 yy

为此可以用 yyx/yx/y 的平均值。这样,我们就取 yy 之后的下一个猜测值为 (1/2)(y+x/y)(1/2)(y+x/y) 而不是 x/yx/y

做出这种猜测序列的计算过程也就是搜寻 y(1/2)(y+x/y)y \mapsto (1/2)(y + x/y) 的不动点。

(define tolerance 0.00001)

(define (average x y) (/ (+ x y) 2))

(define (fixed-point f first-guess)
  (define (close-enough? v1 v2)
    (< (abs (- v1 v2)) tolerance))
  (define (try guess)
    (let ([next (f guess)])
      (if (close-enough? guess next)
          next
          (try next))))
  (try first-guess))

(define (sqrt x)
  (fixed-point (lambda (y) (average y (/ x y))) 1.0))

(list (fixed-point cos 1.0)
      (fixed-point (lambda (y) (+ (sin y) (cos y))) 1.0)
      (sqrt 4))

练习 1.35

证明黄金分割率 ϕ\phi 是变换 x1+1/xx \mapsto 1 + 1/x 的不动点。请利用这一事实,通过过程 fixed-point 计算出 ϕ\phi 的值 黄金分割率:

ϕ2=ϕ+1ϕ=1+1/ϕ\begin{aligned} \phi^2 &= \phi + 1 \\ \phi &= 1 + 1 / \phi \end{aligned}
(define tolerance 0.00001)

(define (average x y) (/ (+ x y) 2))

(define (fixed-point f first-guess)
  (define (close-enough? v1 v2)
    (< (abs (- v1 v2)) tolerance))
  (define (try guess)
    (let ([next (f guess)])
      (if (close-enough? guess next)
          next
          (try next))))
  (try first-guess))

(fixed-point (lambda (x) (+ 1 (/ 1 x))) 1.0)

练习 1.36

修改 fixed-point , 使它能打印出计算中产生的近似值序列。

而后通过找出 xlog(1000)/log(x) x \mapsto log(1000) / log(x) 的不动点的方式,确定 xx=1000x^x = 1000 的一个根

比较采用平均阻尼和不采用平均组尼时的计算步数

(define tolerance 0.00001)

(define (average x y) (/ (+ x y) 2))

(define (fixed-point f first-guess)
  (define (close-enough? v1 v2)
    (< (abs (- v1 v2)) tolerance))
  (define (try guess)
    (display guess)
    (display "; ")
    (let ([next (f guess)])
      (if (close-enough? guess next)
          next
          (try next))))
  (try first-guess))

; 不使用平均阻尼
(fixed-point (lambda (y) (/ (log 1000) (log y))) 1.5)

; 使用平均阻尼
(newline)
(fixed-point (lambda (y) (average y (/ (log 1000) (log y)))) 1.5)

练习 1.37

一个无穷连分式是一个形如以下形式的表达式

f=N1D1+N2D2+N3D3+f = \frac{N_1}{D_1 + \frac{N_2}{D_2 + \frac{N_3}{D_3 + \dots}}}

在所有的 NiN_iDiD_i 都等于 1 时,这一无穷连分式产生出 1/ϕ1 / \phi,其中的 ϕ\phi 就是黄金分割率。

递归形式

(define (cont-frac n d k)
  (define (inner i)
    (if (= i k)
        (/ (n i) (d i))
        (/ (n i) (+ (d i) (inner (+ i 1))))))
  (inner 1))

(cont-frac (lambda (i) 1.0) (lambda (i) 1.0) 100)

迭代形式

(define (cont-frac n d k)
  (define (iter prev i)
    (if (= i 0)
        prev
        (iter (/ (n i) (+ (d i) prev)) (- i 1))))
  (iter 0 k))

(cont-frac (lambda (i) 1.0) (lambda (i) 1.0) 100)

练习 1.38

欧拉提出了一个 e2e - 2 的连分展开式

在这一分式中, NiN_i 全部都是 1,而 DiD_i 依次为 1,2,1,1,4,6,1,1,8,1, 2, 1, 1, 4, 6, 1, 1, 8, \dots

(define (cont-frac n d k)
  (define (iter prev i)
    (if (= i 0)
        prev
        (iter (/ (n i) (+ (d i) prev)) (- i 1))))
  (iter 0 k))

(define (euler n)
  (cont-frac
   (lambda (i) 1.0)
   (lambda (i)
     (if (= (remainder (+ i 1) 3) 0)
         (* (/ (+ i 1) 3) 2)
         1))
   n))

(+ (euler 100) 2)

练习 1.39

正切函数的连分式为

tanx=x1x23x25\tan x = \frac{x}{1 - \frac{x^2}{3 - \frac{x^2}{5 - \ddots}}}

其中 xx 用弧度表示

(define (cont-frac n d k)
  (define (iter prev i)
    (if (= i 0)
        prev
        (iter (/ (n i) (+ (d i) prev)) (- i 1))))
  (iter 0 k))

(define (tan-cf x k)
  (cont-frac
   (lambda (i)
     (if (= i 1) x (- (* x x))))
   (lambda (i)
     (- (* i 2) 1))
   k))

(tan-cf 3.1415926535 10000)

过程作为返回值

实例 平均阻尼的过程抽象

y=x/yy = x/y 不动点可以转换为求

y(1/2)(y+x/y)y \mapsto (1/2) (y + x/y)

的不动点

(define tolerance 0.00001)

(define (average x y) (/ (+ x y) 2))

(define (fixed-point f first-guess)
  (define (close-enough? v1 v2)
    (< (abs (- v1 v2)) tolerance))
  (define (try guess)
    (let ([next (f guess)])
      (if (close-enough? guess next)
          next
          (try next))))
  (try first-guess))

(define (average-damp f)
  (lambda (x) (average x (f x))))

(define (sqrt x)
  (fixed-point (average-damp (lambda (y) (/ x y)))
               1.0))

(sqrt 16)

实例 牛顿法的一般情况

如果 xg(x)x \mapsto g(x) 是一个可微函数,那么方程 g(x)=0g(x) = 0的一个解就是函数 xf(x)x \mapsto f(x) 的一个不动点,其中:

f(x)=xg(x)Dg(x)f(x) = x - \frac{g(x)}{Dg(x)}

这里的 Dg(x)Dg(x)ggxx 的导数。

Dg(x)=g(x+dx)g(x)dxDg(x) = \frac{g(x + \mathrm{d}x) - g(x)}{\mathrm{d}x}
(define (square x) (* x x))

(define tolerance 0.00001)

(define (average x y) (/ (+ x y) 2))

(define (fixed-point f first-guess)
  (define (close-enough? v1 v2)
    (< (abs (- v1 v2)) tolerance))
  (define (try guess)
    (let ([next (f guess)])
      (if (close-enough? guess next)
          next
          (try next))))
  (try first-guess))

(define dx 0.00001)

(define (deriv g)
  (lambda (x)
    (/ (- (g ( + x dx)) (g x))
       dx)))

(define (newton-transform g)
  (lambda (x)
    (- x (/ (g x) ((deriv g) x)))))

(define (newtons-method g guess)
  (fixed-point (newton-transform g) guess))

(define (sqrt x)
  (newtons-method (lambda (y) (- (square y) x))
                  1.0))

(sqrt 16)

抽象和第一级过程

; fixed-point
(define tolerance 0.00001)

(define (average x y) (/ (+ x y) 2))

(define (fixed-point f first-guess)
  (define (close-enough? v1 v2)
    (< (abs (- v1 v2)) tolerance))
  (define (try guess)
    (let ([next (f guess)])
      (if (close-enough? guess next)
          next
          (try next))))
  (try first-guess))

; derivative
(define dx 0.00001)

(define (deriv g)
  (lambda (x)
    (/ (- (g ( + x dx)) (g x))
       dx)))

; newton method
(define (newton-transform g)
  (lambda (x)
    (- x (/ (g x) ((deriv g) x)))))

(define (newtons-method g guess)
  (fixed-point (newton-transform g) guess))

; average damp
(define (average-damp f)
  (lambda (x) (average x (f x))))

(define (square x) (* x x))

(define (fixed-point-of-transform g transform guess)
  (fixed-point (transform g) guess))

(define (sqrt1 x)
  (fixed-point-of-transform (lambda (y) (/ x y))
                            average-damp
                            1.0))

(define (sqrt2 x)
  (fixed-point-of-transform (lambda (y) (- (square y) x))
                            newton-transform
                            1.0))

(list (sqrt1 16)
      (sqrt2 16))

练习 1.40

定义 cubic,使用牛顿法逼近三次方程 x3+ax2+bx+cx^3 + ax^2 + bx + c 的零点

; fixed-point
(define tolerance 0.00001)

(define (average x y) (/ (+ x y) 2))

(define (fixed-point f first-guess)
  (define (close-enough? v1 v2)
    (< (abs (- v1 v2)) tolerance))
  (define (try guess)
    (let ([next (f guess)])
      (if (close-enough? guess next)
          next
          (try next))))
  (try first-guess))

; derivative
(define dx 0.00001)

(define (deriv g)
  (lambda (x)
    (/ (- (g ( + x dx)) (g x))
       dx)))

; newton method
(define (newton-transform g)
  (lambda (x)
    (- x (/ (g x) ((deriv g) x)))))

(define (newtons-method g guess)
  (fixed-point (newton-transform g) guess))

(define (cubic a b c)
  (lambda (x)
    (+ (* x x x) (* a x x) (* b x) c)))

(newtons-method (cubic 1 1 1) 1)

练习 1.41

double

(define (inc x) (+ x 1))

(define (double f)
  (lambda (x)
    (f (f x))))

(((double (double double)) inc) 5)

练习 1.42

compose

(define (suqare x) (* x x))
(define (inc x) (+ x 1))

(define (compose f g)
  (lambda (x) (f (g x))))

((compose square inc) 6)

练习 1.43

repeated

(define (square x) (* x x))
(define (repeated f count)
  (define (iter counter inner-result)
    (if (= counter 0)
        inner-result
        (iter (- counter 1) (f inner-result))))
  (lambda (x) (iter count x)))

((repeated square 2) 5)

练习 1.44

smooth

(define (smooth f)
  (define (dx) 0.0001)
  (lambda (x)
    (/ (+ (f (- x dx)) (f x) (f (+ x dx))) 3)))

练习 1.45

TODO

练习 1.46

TODO

First-class citizens

The rights and privileges of first-class citizens

  • To be named by variables
  • To be passed as arguments to procedures
  • To be returned as values of procedures
  • To be incorporated into data structures